Quality Assurance:

BlowerDoor Measurement -Air Tightness Testing (EN 13829) in Passive Houses

Sigrid Dorschky Certificated Tester of Air Tightness BlowerDoor GmbH • Energie- und Umweltzentrum D-31832 Springe • Germany

BlowerDoor GmbH

Measuring Systems for Airtightness

www.blowerdoor.de

31832 Springe-Eldagsen Telefon (05044) 975-40 Telefon 0700/BLOWERDOOR Telefax (05044) 975-66 e-mail: BlowerDoor@t-online.de

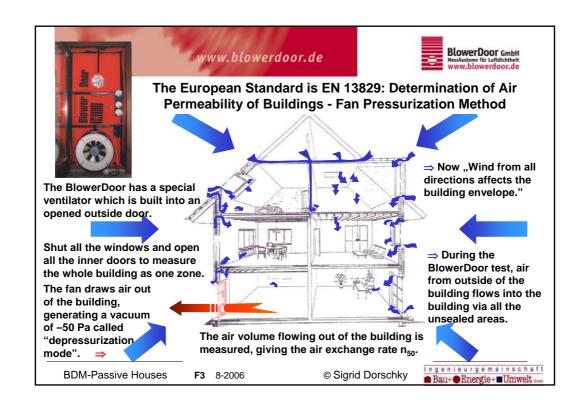
Internet: www.blowerdoor.de

BDM-Passive Houses

F1 8-2006

© Sigrid Dorschky

www.blowerdoor.de


Quality Assurance of Passive Houses: Incorporating and Testing Air-Tightness with the BlowerDoor according to the European Standard EN 13829

- · Measuring airtightness according to the European standard EN 13829
- · Airtightness specifications in some standards and good examples
- · Typical air leakages of the air barrier in buildings: We find them during the BlowerDoor test. If the test is performed before the interior works it is possible to repair air leakages. And I will show you some advanced methods and materials.
- · Good reasons for a good airtightness
- · The best way to good airtightness, especially in passive houses: Better planning – and using the BlowerDoor

BDM-Passive Houses

F2 8-2006

Airtightness Specifications

To calculate the air change rate (ACH) at 50 Pa:

n₅₀ = air leakage rate at 50 Pa / internal volume V

Example of an airtight single family house:

 $188 \, m^3/h / 350 \, m^3 =>$

 $n_{50} = 0.54 h^{-1} (ACH)$

If an energy-saving passive house is constructed, then

n₅₀ should lie below 0.6 h⁻¹

(airtightness specification of Passive House Institute of Dr. Wolfgang Feist).

In comparison see the German targets:

(EnEV - Energy Savings Decree, Standard DIN 4108-7 - Airtightness)

If a building is ventilated by windows: n_{50} must not exceed 3 h⁻¹,

in buildings with ventilation systems: n_{50} must not exceed 1.5 h^{-1} .

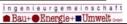
BDM-Passive Houses

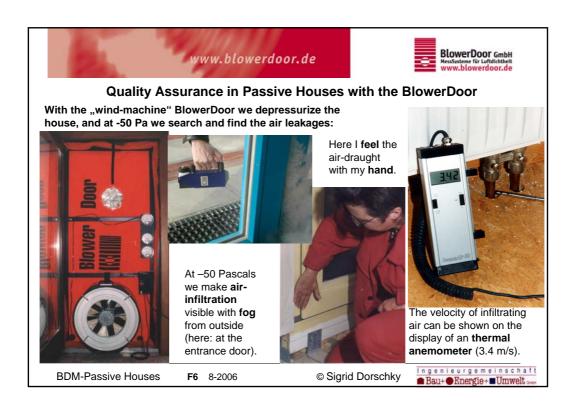
F4 8-2006

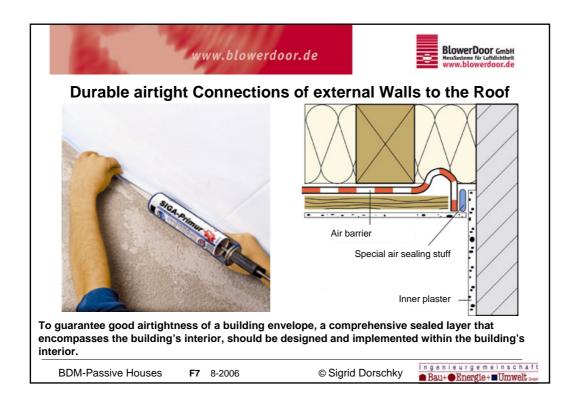
Not only single family houses but also administrative blocks have to be measured with the BlowerDoor:

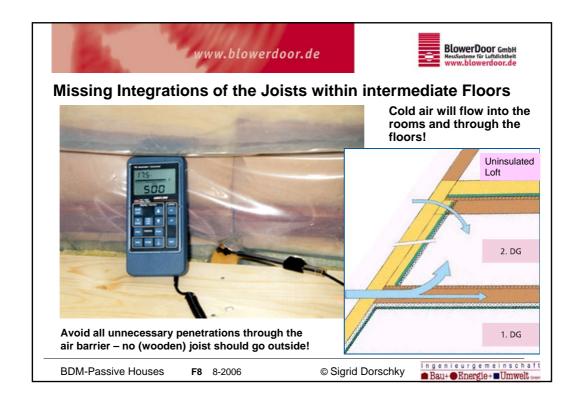
For this building we measured $n_{50} = 0.21$ h⁻¹ (ACH at 50 Pa).

(Air volume: 31,500 m³. Measured with one fan)


BDM-Passive Houses


F5 8-2006


Airtightness of big Buildings


You can test buildings with a volume up to 150,000 m³ with several BlowerDoor fans.

Cold Air draughts at the Window

We find air leakages at the windows where the airtight layer is interrupted or broken, or where construction parts interconnect: Here the window is "sealed" with polyurethene foam – but this material is *not* airtight!

And of course porous constructions of bricks without an inner plaster under the window-board are *not* airtight *at all*!

BDM-Passive Houses

F9 8-2006

© Sigrid Dorschky

Ingenieurgemeinschaft ■ Bau+ ● Energie+ ■ Umwelt oner

Typical air leakages in the ground floor or the intermediate floors

In multiple dwellings and administrative blocks, both the exterior and interior of the building have to be sealed correctly to avoid undesirable air flows between individual flats, in stairwells, and between smoke and fire zones. In particular, air flows through cabling connections and ducts, through joints in ceilings, dividing walls or even through doors can cause annoying odours, noise pollution or even fire to spread.

BDM-Passive Houses

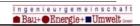
F10 8-2006

© Sigrid Dorschky

Ingenieurgemeinschaft ■ Bau+ ● Energie+ ■ Umwelt omm

The Installation Wall is not the airtight layer, which is behind!

Cold air draughts at the built-in water closet and at pipes and ducts (air velocity, measured at depressurization of -50 Pa: 1.5 and 2.5 m/s).


To solve these problems, at first you have to built in the air barrier:

- fill in concrete at penetrations of service entries through the floor
- put an inner plaster or roughcast on porous constructions of bricks
- or seal the polyethylen to the floor and the penetrations. Afterwards you may built in the installations and the wall.

BDM-Passive Houses

-11 8-2006

© Sigrid Dorschky

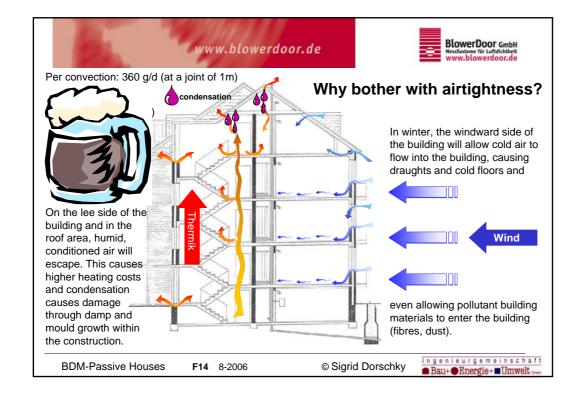
www.blowerdoor.de

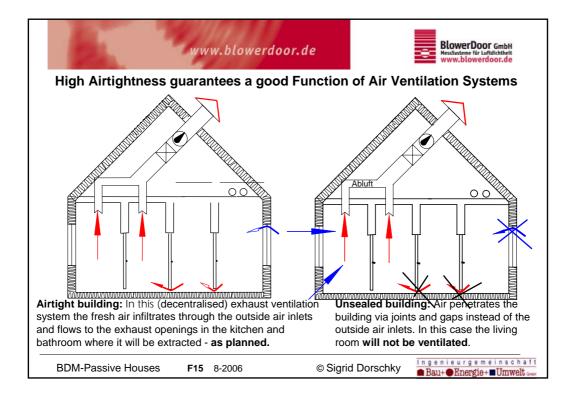
Sealing Installation Penetrations with advanced Materials!

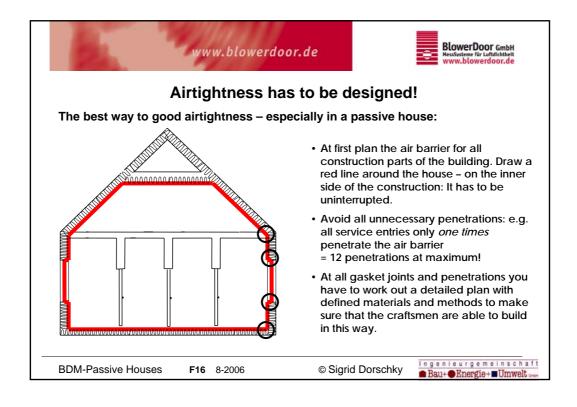
To solve these problems at first you have to reduce penetrations!

Afterwards you have to work out a detailed plan with defined materials and methods.

This is a special sealing sleeve the plumber himself has to pull over his pipes or ducts and stick with suitable sealing tapes to the air barrier.

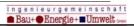

© Sigrid Dorschky


Ingenieurgemeinschaf ■ Bau+ ● Energie+ ■ Umwelt ===


BDM-Passive Houses

F12 8-2006

Quality Assurance during Construction – and the subsequent official Air Tightness Test


Better planning and using the BlowerDoor Test, will pay off. Nowadays, building airtightness is a quality feature and the only way to keep energy consumption down:

- Write the airtightness requirements in the contract, e.g. "n₅₀ should lie below 0.6 h-1".
- Take a preliminary BlowerDoor test of the air barrier to repair air leakages. This test should be performed before the interior works (i.e. gypsum boards) are made. In the beginning all craftsmen should be in the building during the test to learn from errors.
- At last take the BlowerDoor test meeting EN 13829 and you will see that your house is in compliance with the airtightness specification of the standard you have given in the contract!

BDM-Passive Houses

F17 8-2006

